
The FAST Algorithm for Submodular Maximization

Adam Breuer 1 Eric Balkanski 1 Yaron Singer 1

Abstract

In this paper we describe a new parallel al-
gorithm called Fast Adaptive Sequencing Tech-
nique (FAST) for maximizing a monotone sub-
modular function under a cardinality constraint
k. This algorithm achieves the optimal 1 � 1/e
approximation guarantee and is orders of mag-
nitude faster than the state-of-the-art on a variety
of experiments over real-world data sets. Follow-
ing recent work by Balkanski & Singer (2018a),
there has been a great deal of research on algo-
rithms whose theoretical parallel runtime is ex-
ponentially faster than algorithms used for sub-
modular maximization over the past 40 years.
However, while these new algorithms are fast in
terms of asymptotic worst-case guarantees, it is
computationally infeasible to use them in prac-
tice even on small data sets because the num-
ber of rounds and queries they require depend on
large constants and high-degree polynomials in
terms of precision and confidence. The design
principles behind the FAST algorithm we present
here are a significant departure from those of re-
cent theoretically fast algorithms. Rather than
optimize for asymptotic theoretical guarantees,
the design of FAST introduces several new tech-
niques that achieve remarkable practical and the-
oretical parallel runtimes. The approximation
guarantee obtained by FAST is arbitrarily close
to 1 � 1/e, and its asymptotic parallel run-
time (adaptivity) is O(log(n) log2(log k)) using
O(n log log(k)) total queries. We show that
FAST is orders of magnitude faster than any algo-
rithm for submodular maximization we are aware
of, including hyper-optimized parallel versions
of state-of-the-art serial algorithms, by running
experiments on large data sets.
1Harvard University, Cambridge, MA. Correspon-

dence to: Adam Breuer <breuer@g.harvard.edu>,
Eric Balkanski <ebalkans@gmail.com>, Yaron Singer
<yaron@seas.harvard.edu>.

Proceedings of the 37 th
International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

1. Introduction
In this paper we describe a fast parallel algorithm for sub-
modular maximization.1 Informally, a function is submod-
ular if it exhibits a natural diminishing returns property. For
the canonical problem of maximizing a monotone submod-
ular function under a cardinality constraint, it is well known
that the greedy algorithm, which iteratively adds elements
whose marginal contribution is largest to the solution,
obtains a 1 � 1/e approximation guarantee (Nemhauser
et al., 1978) which is optimal for polynomial-time algo-
rithms (Nemhauser & Wolsey, 1978). The greedy algo-
rithm and other submodular maximization techniques are
heavily used in machine learning and data mining as many
fundamental objectives such as entropy, mutual informa-
tion, graphs cuts, diversity, and set cover are submodular.

In recent years there has been a great deal of progress on
fast algorithms for submodular maximization designed to
accelerate computation on large data sets. The first line
of work considers serial algorithms where queries can be
evaluated on a single processor (Leskovec et al., 2007;
Badanidiyuru & Vondrák, 2014; Mirzasoleiman et al.,
2015; 2016; Ene & Nguyen, 2019b;c). For serial algo-
rithms the state-of-the-art for maximization under a car-
dinality constraint is the lazier-than-lazy-greedy (LTLG)
algorithm which returns a solution that is in expectation ar-
bitrarily close to the optimal 1�1/e and does so in a linear
number of queries (Mirzasoleiman et al., 2015). This al-
gorithm is a stochastic greedy algorithm coupled with lazy
updates, which not only performs well in terms of the qual-
ity of the solution it returns, but is also very fast in practice.

Accelerating computation beyond linear runtime requires
parallelization. The parallel runtime of blackbox optimiza-
tion is measured by adaptivity, which is the number of se-
quential rounds an algorithm requires when polynomially-
many queries can be executed in parallel in every round.
For maximizing a submodular function defined over a
ground set of n elements under a cardinality constraint k,
the adaptivity of the naive greedy algorithm is O(k), which
in the worst case is O(n). Until recently no algorithm was
known to have better parallel runtime than that of greedy.

A very recent line of work initiated by Balkanski &
1Code is available from www.adambreuer.com/code.

The FAST Algorithm for Submodular Maximization

Algorithm rounds queries time (sec)

AMORTIZED-FILTERING 961 2124351 20.29
(Balkanski et al., 2019a)
BINARY-SEARCH-MAXIMIZATION 8744 2552028 24.64
(Fahrbach et al., 2019a)
RANDOMIZED-PARALLEL-GREEDY 92 148642 4.11
(Chekuri & Quanrud, 2019b)
PARALLEL-LTLG 200 856 0.15
(Mirzasoleiman et al., 2015)
FAST 9 1598 0.033

Singer (2018a) develops techniques for designing constant
approximation algorithms for submodular maximization
whose parallel runtime is logarithmic (Balkanski & Singer,
2018b; Balkanski et al., 2018; Ene & Nguyen, 2019a;
Fahrbach et al., 2019a;b; Kazemi et al., 2019; Chekuri &
Quanrud, 2019a;b; Balkanski et al., 2019a;b; Ene et al.,
2019; Chen et al., 2019; Esfandiari et al., 2019; Qian &
Singer, 2019). In particular, Balkanski & Singer (2018a)
describe a technique called adaptive sampling that obtains
in O(log n) rounds a 1/3 approximation for maximizing
a monotone submodular function under a cardinality con-
straint. This technique can be used to obtain an approxi-
mation arbitrarily close to the optimal 1� 1/e in O(log n)
rounds (Balkanski et al., 2019a; Ene & Nguyen, 2019a).

1.1. From theory to practice

The focus of the work on adaptivity described above has
largely been on conceptual and theoretical contributions:
achieving strong approximation guarantees under various
constraints with runtimes that are exponentially faster un-
der worst case theoretical analysis. From a practitioner’s
perspective however, even the state-of-the-art algorithms in
this genre are infeasible for large data sets. The logarithmic
parallel runtime of these algorithms carries extremely large
constants and polynomial dependencies on precision and
confidence parameters that are hidden in their asymptotic
analysis. In terms of sample complexity alone, obtaining
(for example) a 1�1/e�0.1 approximation with 95% con-
fidence for maximizing a submodular function under cardi-
nality constraint k requires evaluating at least 108 (Balka-
nski et al., 2019a) or 106 (Fahrbach et al., 2019a; Chekuri
& Quanrud, 2019b) samples of sets of size approximately

k

logn
in every round. Even if one heuristically uses a single

sample in every round, other sources of inefficiencies that
we discuss throughout the paper prevent these algorithms
from being applied even on moderate-sized data sets. The
question is then whether the plethora of breakthrough tech-
niques in this line of work of exponentially faster algo-
rithms for submodular maximization can lead to algorithms
that are fast in practice for large problem instances.

1.2. Our contribution

In this paper we design a new algorithm called Fast Adap-
tive Sequencing Technique (FAST) for maximizing a mono-
tone submodular function under a cardinality constraint k.
FAST has an approximation ratio that is arbitrarily close to
1�1/e, is O(log(n) log2(log k)) adaptive, and uses a total
of O(n log log(k)) queries. The main contribution is not in
the algorithm’s asymptotic guarantees, but in its design that
is extremely efficient both in terms of its non-asymptotic
worst case query complexity and number of rounds, and
in terms of its practical runtime. In terms of actual query
complexity and practical runtime, this algorithm outper-
forms all algorithms for submodular maximization we are
aware of, including hyper-optimized versions of LTLG. To
be more concrete, we give a brief experimental compari-
son in the table above for a movie recommendation objec-
tive on n = 500 movies against optimized implementations
of algorithms with the same adaptivity and approximation
(experiment details in Section 4).2

FAST achieves its speedup by thoughtful design that results
in frugal worst case query complexity as well as several
heuristics used for practical speedups. From a purely ana-
lytical perspective, FAST improves the " dependency in the
linear term of the query complexity of at least Õ("�5

n)
in Balkanski et al. (2019a) and Ene & Nguyen (2019a)
and Õ("�3

n) in Fahrbach et al. (2019a) to Õ("�2
n). We

provide the first non-asymptotic bounds on the query and
adaptive complexity of an algorithm with sublinear adap-
tivity, showing dependency on small constants. Our algo-
rithm uses adaptive sequencing (Balkanski et al., 2019b)
and multiple optimizations to improve the query complex-
ity and runtime.

1.3. Paper organization

We introduce the main ideas and decisions behind the de-
sign of FAST in Section 2. We describe and analyze guar-
antees in Section 3. We discuss experiments in Section 4.

2To obtain these values, we set all algorithms to guarantee a
1�1/e�0.1 approximation with probability 0.95 except LTLG,
which has this guarantee in expectation, and we set k = 200.

The FAST Algorithm for Submodular Maximization

2. FAST Overview
Before describing the algorithm, we give an overview of
the major ideas and discuss how they circumvent the bottle-
necks for practical implementation of existing logarithmic
adaptivity algorithms.

Adaptive sequencing vs. adaptive sampling. The large
majority of low-adaptivity algorithms use adaptive sam-

pling (Balkanski & Singer, 2018a; Ene & Nguyen, 2019a;
Fahrbach et al., 2019a;b; Balkanski et al., 2018; 2019a;
Kazemi et al., 2019), a technique introduced in Balkanski
& Singer (2018a). These algorithms sample a large num-
ber of sets of elements at every iteration to estimate (1) the
expected marginal contribution of a random set R to the
current solution S and (2) the expected marginal contribu-
tions of each element a to R [S. These estimates, which
rely on concentration arguments, are then used to either add
a random set R to S or discard elements with low expected
marginal contribution to R [S.

In contrast, the adaptive sequencing technique which was
recently introduced in Balkanski et al. (2019b) generates
at every iteration a single random sequence (a1, . . . , a|X|)
of the elements X not yet discarded. A prefix Ai? =
(a1, . . . , ai?) of the sequence is then added to the solution
S, where i

? is the largest position i such that a large frac-
tion of the elements in X have high marginal contribution
to S [Ai�1. Elements with low marginal contribution to
the new solution S are then discarded from X .

The first choice we made was to use an adaptive sequencing
technique rather than adaptive sampling.

• Dependence on large polynomials in ". Adaptive
sampling algorithms crucially rely on sampling, and
as a result their query complexity has high polynomial
dependency on " (e.g. at least O("�5

n) in Balkanski
et al. (2019a) and Ene & Nguyen (2019a)). Due to
these " dependencies, the query complexity blows up
with any reasonable value for ". In contrast, adaptive
sequencing generates a single random sequence at ev-
ery iteration. Therefore, in the term that is linear in n

we can obtain an " dependence that is only Õ("�2).

• Dependence on large constants. The asymptotic
query complexity of previous algorithms depends on
very large constants (e.g. at least 60000 in Balkan-
ski et al. (2019a) and Ene & Nguyen (2019a)) mak-
ing them impractical. As we tried to optimize con-
stants for adaptive sampling, we found that due to the
sampling and the requirement to maintain strong the-
oretical guarantees, the constants cascade and grow
through multiple parts of the analysis. In principle,
adaptive sequencing does not rely on sampling, which
dramatically reduces its dependency on constants.

Negotiating the adaptive complexity with the query
complexity. The vanilla version of our algorithm, whose
description and analysis are in Appendix A, has at most
"
�2 log n adaptive rounds and uses a total of "�2

nk queries
to obtain a 1� 1/e� 3

2" approximation, without additional
dependence on constants or lower order terms. In our ac-
tual algorithm, we trade a small factor in adaptive complex-
ity for a substantial improvement in query complexity. We
do this in the following manner:

• Search for estimates of OPT. All algorithms with
logarithmic adaptivity require a good estimate of OPT,
which can be obtained by running "

�1 log k instances
of the algorithms with different guesses of OPT in par-
allel, so that one guess is guaranteed to be a good ap-
proximation to OPT.3 We accelerate this search by
binary searching over the guesses of OPT. A main
difficulty when using this binary search is that the ap-
proximation guarantee of the solution obtained with
each guess of OPT needs to hold with high probabil-
ity, instead of in expectation, to obtain any guarantee
for the global solution.

Even though the guarantees on the marginal contribu-
tions obtained from each element added to the solution
only hold in expectation for adaptive sequencing, we
obtain high probability guarantees for the global solu-
tion by generalizing the robust guarantees obtained in
Hassidim & Singer (2017) so that they also apply to
adaptive sequencing. In the practical speedups below,
we discuss how we often only need a single iteration
of this binary search in practice;

• Search for position i
?. To find the position i

?, which
is the largest position i 2 [k] in the sequence such that
a large fraction of not-yet-discarded elements have
high marginal contribution to S [Ai�1, the vanilla
adaptive sequencing technique queries the marginal
contribution of all elements in X at each of the k po-
sitions. This search for i

? causes the O(nk) query
complexity.

Instead, similarly to the search of OPT, we binary
search over a set of "�1 log k geometrically increas-
ing values i that correspond to guesses of i

?. This
improves the O(nk) dependency on n and k in the
query complexity to O(n log(log k)). Then, at any
step of the binary search over a position i, instead of
evaluating the marginal contribution of all elements
in X to S [Ai�1, we only evaluate a small sample
of elements. In the practical speedups below, we dis-
cuss how we can often skip this binary search for i? in
practice.

3Fahrbach et al. (2019a) do some preprocessing to estimate
OPT, but it is estimated within some very large constant.

The FAST Algorithm for Submodular Maximization

Practical speedups. We include several ideas which re-
sult in considerable speedups in practice without sacrificing
approximation, adaptivity, or query complexity guarantees:

• Preprocessing the sequence. At the outset of each it-
eration of the algorithm, before searching for a prefix
Ai? to add to the solution S, we first use a prepro-
cessing step that adds high value elements from the
sequence to S. Specifically, we add to the solution S

all sequence elements ai that have high marginal con-
tribution to S [Ai�1.

After adding these high-value elements, we discard
surviving elements in X that have low marginal con-
tribution to the new solution S. In the case where this
step discards a large fraction of surviving elements
from X , we can also skip this iteration’s binary search
for i? and continue to the next iteration without adding
a prefix to S;

• Number of elements added per iteration. An adap-
tive sampling algorithm which samples sets of size s

adds at most s elements to the current solution at each
iteration. In contrast, adaptive sequencing and the pre-
processing step described above often allow our algo-
rithm to add a very large number of elements to the
current solution at each iteration in practice;

• Single iteration of the binary search for OPT. Even
with binary search, running multiple instances of the
algorithm with different guesses of OPT is undesir-
able. We describe a technique that often needs only
a single guess of OPT. This guess is the sum v =
max|S|k

P
a2S

f(a) of the k highest valued single-
tons, which is an upper bound on OPT. If the solu-
tion S obtained with that guess v has value f(S) �
(1 � 1/e)v, then, since v � OPT, S is guaranteed
to obtain a 1 � 1/e approximation and the algorithm
does not need to continue the binary search. Note that
with a single guess of OPT, the robust guarantees for
the binary search are not needed, which improves the
sample complexity to m = 2+"

"2(1�3") log(2�
�1);

• Lazy updates. There are many situations where
lazy evaluations of marginal contributions can be per-
formed (Minoux, 1978; Mirzasoleiman et al., 2015).
Since we never discard elements from the solution S,
the marginal contributions of elements a to S are non-
increasing at every iteration by submodularity. Ele-
ments with low marginal contribution c to the current
solution at some iteration are ignored until the thresh-
old t is lowered to t c. Lazy updates also accelerate
the binary search over i?.

3. The Algorithm
We describe the FAST-FULL algorithm (Algorithm 1). The
main part of the algorithm is the FAST subroutine (Algo-
rithm 2), which is instantiated with different guesses of
OPT. These guesses v 2 V of OPT are geometrically in-
creasing from maxa2N f(a) to max|S|k

P
a2S

f(a) by a
(1 � ")�1 factor, so V contains a value that is a 1 � " ap-
proximation to OPT. The algorithm binary searches over
guesses for the largest guess v that obtains a solution S that
is a 1� 1/e approximation to v.

Algorithm 1 FAST-FULL: the full algorithm
input function f , cardinality constraint k, parameter "

V GEOM(maxa f(a),max|S|k

P
a2S

f(a), 1� ")
v
?
 B-SEARCH(max{v 2 V : f(Sv) � (1� 1/e)v})

where Sv FAST(v)
return Sv?

FAST generates at every iteration a uniformly random se-
quence a1, . . . , a|X| of the elements X not yet discarded.
After the preprocessing step which adds to S elements
guaranteed to have high marginal contribution, the algo-
rithm identifies a position i

? in this sequence which deter-
mines the prefix Ai?�1 that is added to the current solution
S. Position i

? is defined as the largest position such that
there is a large fraction of elements in X with high con-
tribution to S [Ai?�1. To find i

?, we binary search over
geometrically increasing positions i 2 I ✓ [k]. At each
position i, we only evaluate the contributions of elements
a 2 R , where R is a uniformly random subset of X of size
m, instead of all elements X .

Algorithm 2 FAST: the Fast Adaptive Sequencing Tech-
nique algorithm
input f , constraint k, guess v for OPT, parameter "

S ;

while |S| < k and number of iterations < "
�1 do

X N, t (1� ")(v � f(S))/k
while X 6= ; and |S| < k do

a1, . . . , a|X| SEQUENCE(X, |X|)
Ai a1, . . . , ai

S S [{ai : fS[Ai�1(ai) � t}

X0 {a 2 X : fS(a) � t}

if |X0| (1� ")|X| then
X X0 and continue to next iteration

R SAMPLE(X,m),
I GEOM(1, k � |S|, 1� ")
Ri

�
a 2 R : fS[Ai�1(a) � t

, for i 2 I

i
?
 B-SEARCH(max{i : |Ri| � (1� 2")|R|})

S S [Ai?

return S

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

0e+00

5e+01

1e+02

10 20 30 40
k

ob
je

ct
iv

e
va

lu
e

● FAST
Am−Filtering
Rand−P−Greedy
Bin−Search−Max
Parallel−Greedy
Parallel−LTLG
Random

SBM Graph: n=515

●

●

●

●

●

●

●

0e+00

1e+02

2e+02

3e+02

10 20 30 40
k

ob
je

ct
iv

e
va

lu
e

ER Graph: n=500

●

●

●

●

●

●

●

0.0e+00

5.0e+01

1.0e+02

1.5e+02

10 20 30 40
k

ob
je

ct
iv

e
va

lu
e

WS Graph: n=500

●

●

●

●
●

●
●

0e+00

1e+02

2e+02

3e+02

10 20 30 40
k

ob
je

ct
iv

e
va

lu
e

BA Graph: n=500

● ●

●
● ● ●

●

0.1

0.5

1.0

10 20 30 40
k

tim
e

(s
ec

)

● ●
●

●
● ● ●

0.1

0.5

1.0

5.0

10.0
15.0
20.0

10 20 30 40
k

tim
e

(s
ec

)

●

● ● ●
●

●
●

0.1

0.5

1.0

10 20 30 40
k

tim
e

(s
ec

)

● ● ●
● ●

●
●

0.1

0.5

1.0

5.0

10.0
15.0
20.0

10 20 30 40
k

tim
e

(s
ec

)

Figure 1. Experiment Set 1.a: FAST (blue) vs. low-adaptivity algorithms and PARALLEL-LTLG on graphs (time axis log-scaled).

3.1. Analysis

We show that FAST obtains a 1 � 1/e � " approximation
w.p. 1�� and that it has Õ("�2 log n) adaptive complexity
and Õ("�2

n+ "
�4 log(n) log(��1)) query complexity.

Theorem 1. Assume k �
2 log(2��1

`)
"2(1�5") and " 2 (0, 0.1),

where ` = log(log k

"
). Then, FAST with sample complexity

m = 2+"

"2(1�3") log(
4` logn

�"2
) has at most "

�2 log(n)`2 adap-

tive rounds, 2"�2
`n+"

�4 log(n)`2m queries, and achieves

a 1� 1
e
� 4" approximation with probability 1� �.

We defer the analysis to Appendix B. The main part of it
is for the approximation guarantee, which consists of two
cases depending on the condition which breaks the outer-
loop. Lemma 3 shows that when there are "

�1 iterations
of the outer-loop, the set of elements added to S at every
iteration of the outer-loop contributes "

�1(OPT � f(S)).
Lemma 5 shows that for the case where |S| = k, the ex-
pected contribution of each element ai added to S is arbi-
trarily close to (OPT� f(S))/k. For each solution Sv , we
need the approximation guarantee to hold with high prob-
ability instead of in expectation to be able to binary search
over guesses for OPT, which we obtain in Lemma 7 by
generalizing the robust guarantees of Hassidim & Singer
(2017) in Lemma 6. The main observation to obtain the
adaptive complexity (Lemma 6) is that, by definition of
i
?, at least an " fraction of the surviving elements in X

are discarded at every iteration with high probability.4 For
4To obtain the adaptivity r with probability 1 and the approx-

imation guarantee w.p. 1� �, the algorithm declares failure after
r rounds and accounts for this failure probability in �.

the query complexity (Lemma 7), we note that there are
|X|+m` function evaluations per iteration.

4. Experiments
Our goal in this section is to show that in practice, FAST
finds solutions whose value meets or exceeds alternatives
in less parallel runtime than both state-of-the-art low-
adaptivity algorithms and LAZIER-THAN-LAZY-GREEDY
(LTLG). To accomplish this, we build optimized parallel
MPI implementations of FAST, other low-adaptivity algo-
rithms, and LTLG, which is widely regarded as the fastest
algorithm for submodular maximization in practice. We
then use 95 Intel Skylake-SP 3.1 GHz processors on AWS
to compare the algorithms’ runtime over a variety of objec-
tives defined on 8 real and synthetic datasets. We measure
runtime using a rigorous measure of parallel time (see Ap-
pendix C.8). Appendices C.1, C.4, C.9, and C.6 contain
detailed descriptions of the benchmarks, objectives, imple-
mentations, hardware, and experimental setup on AWS.5

We conduct two sets of experiments. The first set com-
pares FAST to previous low-adaptivity algorithms on 8 ob-
jectives. Since previous algorithms all have practically in-
tractable sample complexity, we grossly reduce their sam-
ple complexity to only 95 samples per iteration so that
each processor performs a single function evaluation per
iteration. This reduction, which we discuss in detail be-
low, gives these algorithms a large runtime advantage over
FAST, which computes its full theoretical sample complex-
ity in all experiments. This is practically feasible for FAST

5Code is available from www.adambreuer.com/code.

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

●

0.0e+00

3.0e+08

6.0e+08

9.0e+08

1.2e+09

40 80 120 160
k

ob
je

ct
iv

e
va

lu
e

● FAST
Am−Filtering
Rand−P−Greedy
Bin−Search−Max
Parallel−Greedy
Parallel−LTLG
Random

Traffic Network: n=525

●

●

●

●

●

●

●

●

0e+00

1e+05

2e+05

3e+05

50 100 150 200
k

ob
je

ct
iv

e
va

lu
e

Movie Recommendation: n=500

●

●

●

●

●

●

●
●

●
●

0e+00

1e+03

2e+03

50 100 150 200
k

ob
je

ct
iv

e
va

lu
e

YouTube: n=571

●

●

●

●

●

●

●

0e+00

1e+02

2e+02

3e+02

4e+02

100 200 300
k

ob
je

ct
iv

e
va

lu
e

Influence Max: n=769

●

●

● ●
● ● ● ●

0.1

0.5
1.0

10.0

40 80 120 160
k

tim
e

(s
ec

)

● ●

● ● ●
● ●

●

0.1

0.5

1.0

10.0

50 100 150 200
k

tim
e

(s
ec

)

●
● ● ●

● ●

● ● ● ●

0.1

0.5
1.0

10.0

50 100 150 200
k

tim
e

(s
ec

)

●
●

●
●

●
●

●0.1

0.5
1.0

10.0

100.0

100 200 300
k

tim
e

(s
ec

)

Figure 2. Experiment Set 1.b: FAST (blue) vs. low-adaptivity algorithms and PARALLEL-LTLG on real data (time axis log-scaled).

because FAST samples elements, not sets of elements like
previous algorithms. Despite the large advantage this setup
gives to the previous low-adaptivity algorithms, FAST is
consistently one to three orders of magnitude faster.

The second set of experiments compares FAST to
PARALLEL-LAZIER-THAN-LAZY-GREEDY (PARALLEL-
LTLG) on large-scale data sets. We scale up the 8 objec-
tives to be defined on synthetic data with n = 100000 and
real data with up to n = 26000 and various k ranging from
k = 25 to k = 25000. We find that FAST is consistently
1.5 to 27 times faster than PARALLEL-LTLG, and its run-
time advantage increases in k. These fast relative runtimes
are a loose lower bound on FAST’s performance advantage,
as FAST can reap additional speedups by adding up to n

processors, whereas PARALLEL-LTLG performs at most
n log("�1)/k function evaluations per iteration, so using
over 95 processors often does not help. In Section 4.1, we
show that on many objectives FAST is faster even with only
a single processor.

4.1. Experiments set 1: FAST vs. low-adaptivity
algorithms

Our first set of experiments compares FAST to state-of-
the-art low-adaptivity algorithms. To accomplish this,
we built optimized parallel MPI versions of each of
the following algorithms: RANDOMIZED-PARALLEL-
GREEDY (Chekuri & Quanrud, 2019b), BINARY-
SEARCH-MAXIMIZATION (Fahrbach et al., 2019a), and
AMORTIZED-FILTERING (Balkanski et al., 2019a). For
any given " > 0 all these algorithms achieve a 1� 1/e� "

approximation in O(poly("�1) log n) rounds.

We also compare these low-adaptivity algorithms to an op-
timized parallel MPI implementation of LAZIER-THAN-
LAZY-GREEDY (LTLG) (Mirzasoleiman et al., 2015) (see
Appendix C.11). LTLG is widely regarded as the fastest
algorithm for submodular maximization in practice, and it
has a (1�1/e�") approximation guarantee in expectation.

For calibration, we also ran (1) PARALLEL-GREEDY, a
parallel version of the standard GREEDY algorithm, as a
heuristic upper bound for the objective value, as well as
(2) RANDOM, an algorithm that simply selects k elements
uniformly at random.

A fair comparison of the low-adaptivity algorithms’ paral-
lel runtimes and solution values is to run each algorithm
with parameters that yield the same guarantees, for exam-
ple a 1�1/e�" approximation w.p. 1�� with " = 0.1 and
� = 0.05. However, this is infeasible since the other low-
adaptivity algorithms all require a practically intractable
number of queries to achieve any reasonable guarantees,
e.g. every round of AMORTIZED-FILTERING would re-
quire at least 108 samples, even with n = 500.

Dealing with benchmarks’ practically intractable query
complexity. To run other low-adaptivity algorithms de-
spite their huge sample complexity we made two major
modifications:

1. Accelerating subroutines. We optimize each of the
three other low-adaptivity benchmarks by implement-
ing parallel binary search to replace brute-force search
and several other modifications that reduce unnecessary
queries (for a full description of these fast implementa-
tions, see Appendix C.10). These optimizations result in

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

0e+00

1e+04

2e+04

0 2500 5000 7500 10000
k

ob
je

ct
iv

e
va

lu
e

● FAST
Parallel−LTLG
Random

SBM Graph: n=48,000

●

●

●

●
●

●

●

●

●

●

●

●
●

0.0e+00

2.5e+04

5.0e+04

7.5e+04

1.0e+05

0 250 500 750 1000
k

ob
je

ct
iv

e
va

lu
e

ER Graph: n=100,000

●
●●

●

●

●

●

●

●

0e+00

2e+04

4e+04

6e+04

8e+04

0 5000 10000 15000 20000 25000
k

ob
je

ct
iv

e
va

lu
e

WS Graph: n=100,000

●

●

●

●

●

●

●

●

●

0e+00

2e+04

4e+04

6e+04

8e+04

0 2500 5000 7500 10000 12500
k

ob
je

ct
iv

e
va

lu
e

BA Graph: n=100,000

● ● ●
● ● ●

●

0

100

200

0 2500 5000 7500 10000
k

tim
e

(s
ec

)

●● ●
● ● ● ● ● ● ● ● ●

●

0

50

100

0 250 500 750 1000
k

tim
e

(s
ec

)

●●● ● ●

●
● ●

●

0

500

1,000

1,500

0 5000 10000 15000 20000 25000
k

tim
e

(s
ec

)

●
●

● ● ● ●

●

●

●

0

200

400

600

0 2500 5000 7500 10000 12500
k

tim
e

(s
ec

)

Figure 3. Experiment Set 2.a: FAST (blue) vs. PARALLEL-LTLG (red) on graphs.

speedups that reduce their runtimes by an order of mag-
nitude in practice, and our implementations are pub-
licly available in our code base. Despite this, it remains
practically infeasible to compute these algorithms’ high
number of samples in practice even on small problems
(e.g. n = 500 elements);

2. Using a single query per processor. Since our inter-
est is in comparing runtime and not quality of approxi-
mation, we dramatically lowered the number of queries
the three benchmark algorithms require to achieve their
guarantees. Specifically, we set the parameters " and
� for both FAST and the three low-adaptivity bench-
marks such that all algorithms guarantee the same 1 �
1/e� 0.1 approximation with probability 0.95 (see Ap-
pendix C.3). However, for the low-adaptivity bench-
marks, we reduce their theoretical sample complexity
in each round to have exactly one sample per proces-
sor (instead of their large sample complexity, e.g. 108

samples needed for AMORTIZED-FILTERING).

This reduction in the number of samples per round al-
lows the benchmarks to have each processor perform
a single function evaluation per round instead of e.g.
108/95 functions evaluations per processor per round,
which ‘unfairly’ accelerates their runtimes at the ex-
pense of their approximations. However, we do not per-
form this reduction for FAST. Instead, we require FAST
to compute the full count of samples for its guarantees.
This is feasible since FAST samples elements rather than
sets.

Data sets. Even with these modifications, for tractability
we could only use small data sets:

• Experiments 1.a: synthetic data sets (n ⇡ 500).
To compare the algorithms’ runtimes under a range of
conditions, we solve max cover on synthetic graphs
generated via four different well-studied graph mod-
els: Stochastic Block Model (SBM); Erdős Rényi (ER);
Watts-Strogatz (WS); and Barbási-Albert (BA). See Ap-
pendix C.4.1 for additional details;

• Experiments 1.b: real data sets (n ⇡ 500). To com-
pare the algorithms’ runtimes on real data, we opti-
mize Sensor Placement on California roadway traffic
data; Movie Recommendation on MovieLens data; Rev-

enue Maximization on YouTube Network data; and In-

fluence Maximization on Facebook Network data. See
Appendix C.4.3 for additional details.

Results of experiment set 1. Figures 1 and 2 plot all al-
gorithms’ solution values and parallel runtimes for various
k on synthetic and real data (each point is the mean of 5 tri-
als with the corresponding k). In terms of solution values,
across all experiments, values obtained by FAST are nearly
indistinguishable from values obtained by GREEDY—the
heuristic upper bound. From this comparison, it is clear that
FAST does not compromise on the values of its solutions.
In terms of runtime, FAST is 36 to 1600 times faster than
BINARY-SEARCH-MAXIMIZATION; 7 to 120 times faster
than RANDOMIZED-PARALLEL-GREEDY; 4 to 2200 times
faster than AMORTIZED-FILTERING; and 1.1 to 7 times
faster than PARALLEL-LTLG on the 8 objectives and var-
ious k (the time axes of Figures 1 and 2 are log-scaled).
Appendix C.12 shows that FAST continues to outperform
all benchmarks even (1) when we turn off its lazy updates,
and (2) when we run all low-adaptivity benchmarks on just

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

●

●

●

0e+00

2e+09

4e+09

250 500 750
k

ob
je

ct
iv

e
va

lu
e

● FAST
Parallel−LTLG
Random

Traffic Network: n=1885

●

●

●

●

●

●

●

0.00e+00

2.50e+06

5.00e+06

7.50e+06

1.00e+07

1.25e+07

100 200 300 400 500
k

ob
je

ct
iv

e
va

lu
e

Movies: n=3706

●

●

●

●

●

●

●
●

●
●

0.0e+00

2.5e+04

5.0e+04

7.5e+04

250 500 750 1000
k

ob
je

ct
iv

e
va

lu
e

YouTube: n=17,432

●

●

●

●

●

●

●

●

●

●

●

●

0e+00

3e+03

6e+03

9e+03

0 2500 5000 7500 10000
k

ob
je

ct
iv

e
va

lu
e

Influence Max: n=26,588

● ● ●
● ● ● ●

●
● ●

0

10

20

30

40

50

250 500 750
k

tim
e

(s
ec

)

● ● ●

● ●

●
●0.25

0.50

0.75

1.00

100 200 300 400 500
k

tim
e

(s
ec

)

● ●
● ● ● ●

● ● ● ●

0

50

100

150

200

250

250 500 750 1000
k

tim
e

(s
ec

)

● ● ●
● ● ●

●
● ● ● ● ●

0

50

100

150

200

0 2500 5000 7500 10000
k

tim
e

(s
ec

)

Figure 4. Experiment Set 2.b: FAST (blue) vs. PARALLEL-LTLG (red) on real data.

a single ‘good’ guess for OPT. We emphasize that FAST’s
faster runtimes were obtained despite the fact that the three
other low-adaptivity algorithms were run with only a single
sample per processor each iteration, rather than the 108 or
106 samples required for their respective guarantees.

4.2. Experiment set 2: FAST vs.
Parallel-Lazier-than-Lazy-Greedy

Our second set of experiments compares FAST to the op-
timized parallel version of LAZIER-THAN-LAZY-GREEDY
(LTLG) (Mirzasoleiman et al., 2015) on large data sets.
Specifically, our optimized parallel MPI implementation
of LTLG allows us to scale up to random graphs with
n ⇡ 100000, large real data with n up to 26000, and var-
ious k from 25 to 25000 (see Appendix C.11). For these
large experiments, running the parallel GREEDY algorithm
is impractical. LTLG has a (1 � 1/e � ") approxima-
tion guarantee in expectation, so we likewise set both al-
gorithms’ parameters " to guarantee a (1� 1/e � 0.1) ap-
proximation in expectation (see Appendix C.3).

Results of experiment set 2. Figures 3 and 4 plot so-
lution values and runtimes for various k on large experi-
ments with synthetic and real data (each point is the mean
of 5 trials). In terms of solution values, while the two algo-
rithms achieved similar solution values across all 8 exper-
iments, FAST obtained slightly higher solution values than
PARALLEL-LTLG on most objectives and values of k.

In terms of runtime, FAST was 1.5 to 32 times faster than
PARALLEL-LTLG on each of the 8 objectives and all k we
tried from k = 25 to 25000. More importantly, runtime
disparities between FAST and PARALLEL-LTLG increase

in larger k, so larger problems exhibit even greater runtime
advantages for FAST.

Furthermore, we emphasize that due to the fact that the
sample complexity of PARALLEL-LTLG is less than 95
for many experiments, it cannot achieve better runtimes by
using more processors, whereas FAST can leverage up to
n processors to achieve additional speedups. Therefore,
FAST’s fast relative runtimes are a loose lower bound for
what can be obtained on larger-scale hardware and prob-
lems. Figure 5 plots FAST’s parallel speedups versus the
number of processors we use.

● ● ● ● ●

● ●
●

0

500

1,000

1,500

100 200 300 400 500
k

tim
e

(s
ec

)

● FAST
Parallel−LTLG

1 Processor Runtime: YouTube

●

●

●

●

●

●

5

10

15

20

1 2 4 8 16 32
processors

Pa
ra

lle
l S

pe
ed

up
 (s

er
ia

l t
im

e/
pa

ra
lle

l t
im

e)

Parallel Speedup: YouTube

● ● ● ● ●

● ●
●

0

500

1,000

1,500

100 200 300 400 500
k

tim
e

(s
ec

)
● FAST

Parallel−LTLG

1 Processor Runtime: YouTube

●

●

●

●

●

●

5

10

15

20

1 2 4 8 16 32
processors

Pa
ra

lle
l S

pe
ed

up
 (s

er
ia

l t
im

e/
pa

ra
lle

l t
im

e)

Parallel Speedup: YouTube

Figure 5. Single processor runtimes for FAST and PARALLEL-
LTLG, and parallel speedups vs. number of processors for FAST
for the YouTube experiment. See Appendix C.14 for details.

Finally, we note that even on a single processor, FAST is
faster than LTLG for reasonable values of k on 7 of the 8
objectives due to the fact that FAST often uses fewer queries
(see Appendix C.13). For example, Figure 5 plots single
processor runtimes for the YouTube experiment.

The FAST Algorithm for Submodular Maximization

5. Acknowledgements
This research was supported by a Google PhD Fellowship,
NSF grant CAREER CCF-1452961, BSF grant 2014389,
NSF USICCS proposal 1540428, NSF Grant 164732, a
Google research award, and a Facebook research award.

References
Badanidiyuru, A. and Vondrák, J. Fast algorithms for max-

imizing submodular functions. In Proceedings of the

Twenty-Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2014, Portland, Oregon, USA, Jan-

uary 5-7, 2014, pp. 1497–1514, 2014. doi: 10.1137/1.
9781611973402.110. URL https://doi.org/10.

1137/1.9781611973402.110.

Balkanski, E. and Singer, Y. The adaptive complexity of
maximizing a submodular function. In Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of

Computing, pp. 1138–1151. ACM, 2018a.

Balkanski, E. and Singer, Y. Approximation guarantees
for adaptive sampling. In International Conference on

Machine Learning, pp. 393–402, 2018b.

Balkanski, E., Breuer, A., and Singer, Y. Non-monotone
submodular maximization in exponentially fewer itera-
tions. NIPS, 2018.

Balkanski, E., Rubinstein, A., and Singer, Y. An expo-
nential speedup in parallel running time for submodu-
lar maximization without loss in approximation. SODA,
2019a.

Balkanski, E., Rubinstein, A., and Singer, Y. An opti-
mal approximation for submodular maximization under
a matroid constraint in the adaptive complexity model.
STOC, 2019b.

CalTrans. Pems: California performance measuring sys-
tem. http://pems.dot.ca.gov/ [accessed: Au-
gust 1, 2019].

Chekuri, C. and Quanrud, K. Parallelizing greedy for sub-
modular set function maximization in matroids and be-
yond. STOC, 2019a.

Chekuri, C. and Quanrud, K. Submodular function
maximization in parallel via the multilinear relaxation.
SODA, 2019b.

Chen, L., Feldman, M., and Karbasi, A. Unconstrained
submodular maximization with constant adaptive com-
plexity. STOC, 2019.

Ene, A. and Nguyen, H. L. Submodular maximization with
nearly-optimal approximation and adaptivity in nearly-
linear time. SODA, 2019a.

Ene, A. and Nguyen, H. L. A nearly-linear time algo-
rithm for submodular maximization with a knapsack
constraint. ICALP, 2019b.

Ene, A. and Nguyen, H. L. Towards nearly-linear time al-
gorithms for submodular maximization with a matroid
constraint. ICALP, 2019c.

Ene, A., Nguyen, H. L., and Vladu, A. Submodular maxi-
mization with matroid and packing constraints in paral-
lel. STOC, 2019.

Esfandiari, H., Karbasi, A., and Mirrokni, V. Adap-
tivity in adaptive submodularity. arXiv preprint

arXiv:1911.03620, 2019.

Fahrbach, M., Mirrokni, V., and Zadimoghaddam, M.
Submodular maximization with optimal approximation,
adaptivity and query complexity. SODA, 2019a.

Fahrbach, M., Mirrokni, V. S., and Zadimoghaddam, M.
Non-monotone submodular maximization with nearly
optimal adaptivity and query complexity. ICML, 2019b.

Feldman, M., Harshaw, C., and Karbasi, A. Defining and
evaluating network communities based on ground-truth.
Knowledge and Information Systems 42, 1 (2015), 33

pages., 2015.

Harper, F. M. and Konstan., J. A. The movielens datasets:
History and context. ACM Transactions on Interactive

Intelligent Systems (TiiS) 5, 4, Article 19 (December

2015), 19 pages., 2015. doi: http://dx.doi.org/10.1145/
2827872.

Hassidim, A. and Singer, Y. Robust guarantees of stochas-
tic greedy algorithms. In Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume 70,
pp. 1424–1432. JMLR. org, 2017.

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi,
S., and Karbasi, A. Submodular streaming in all its
glory: Tight approximation, minimum memory and low
adaptive complexity. arXiv preprint arXiv:1905.00948,
2019.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Van-
Briesen, J. M., and Glance, N. S. Cost-effective out-
break detection in networks. In Proceedings of the 13th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Jose, California, USA,

August 12-15, 2007, pp. 420–429, 2007. doi: 10.1145/
1281192.1281239. URL https://doi.org/10.

1145/1281192.1281239.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization techniques,
pp. 234–243. Springer, 1978.

https://doi.org/10.1137/1.9781611973402.110
https://doi.org/10.1137/1.9781611973402.110
http://pems.dot.ca.gov/
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1145/1281192.1281239

The FAST Algorithm for Submodular Maximization

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.,
Vondrák, J., and Krause, A. Lazier than lazy greedy.
In Twenty-Ninth AAAI Conference on Artificial Intelli-

gence, 2015.

Mirzasoleiman, B., Badanidiyuru, A., and Karbasi, A.
Fast constrained submodular maximization: Personal-
ized data summarization. In ICML, pp. 1358–1367,
2016.

Nemhauser, G. L. and Wolsey, L. A. Best algorithms for
approximating the maximum of a submodular set func-
tion. Mathematics of operations research, 3(3):177–188,
1978.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions—i. Mathematical Programming, 14(1):
265–294, 1978.

Qian, S. and Singer, Y. Fast parallel algorithms for statis-
tical subset selection problems. In Advances in Neural

Information Processing Systems, pp. 5073–5082, 2019.

Rossi, R. A. and Ahmed, N. K. The network data
repository with interactive graph analytics and visual-
ization. In Proceedings of the Twenty-Ninth AAAI Con-

ference on Artificial Intelligence, 2015. URL http:

//networkrepository.com.

Traud, A. L., Mucha, P. J., and Porter, M. A. Social
structure of Facebook networks. Phys. A, 391(16):4165–
4180, Aug 2012.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P.,
Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B.
Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001.

http://networkrepository.com
http://networkrepository.com

